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Abstract— A direct three-dimensional finite-difference time-

domain (FDTD) method is applied to the full-wave analysis 

of various microstrip structures. The method is shown to be 

an efficient tool for modeling complicated microstrip circuit 

components and microstrip antennas. From the time-domain 

results the input impedance of a line-fed rectangular patch 

antenna and the frequency-dependent scattering parameters 

of a low-pass filter and a branch-line coupler are 

calculated. These circuits were fabricated and the 

measurements made on them are compared with the FDTD 

results and shown to be in good agreement.  

Keywords— FDTD,TSFS 

I. INTRODUCTION 

The finite-difference time-domain (FDTD) method is 

arguably the simplest, both conceptually and in terms of 

implementation, of the full-wave techniques used to solve 

problems in electromagnetic[1]. It can accurately tackle a 

wide range of problems. However, as with all numerical 

methods, it does have its share of artifacts and the accuracy 

is contingent upon the implementation. The FDTD method 

can solve complicated problems, but it is generally 

computationally expensive. Solutions may require a large 

amount of memory and computation time. The FDTD 

method loosely fits into the category of “resonance region” 

techniques, i.e., ones in which the characteristic dimensions 

of the domain of interest are somewhere on the order of a 

wavelength[5] in size. If an object is very small compared to 

a wavelength, quasi-static approximations generally provide 

more efficient solutions. Alternatively, if the wavelength is 

exceedingly small compared to the physical features of 

interest, ray-based methods or other techniques may provide 

a much more efficient way to solve the problem.[4]). The 

FDTD method employs finite differences as approximations 

to both the spatial and temporal derivatives that appear in 

Maxwell’s equations (specifically Ampere’s and Faraday’s 

laws). Consider the Taylor series expansions of the function 

f(x) expanded about the point x0 with an offset of ±δ/2: 

 

 
where the primes indicate differentiation. 

Subtracting the second equation from the first yields 

 
Dividing by δ produces 

 
Thus the term on the left is equal to the derivative 

of the function at the point x0 plus a term which 

depends on δ2 plus an infinite number of other terms which 

are not shown. For the terms which are 

not shown, the next would depend on δ4 and all subsequent 

terms would depend on even higher powers of δ. 

Rearranging slightly, this relationship is often stated as 

 
The “big-Oh” term represents all the terms that are 

not explicitly shown and the value in parentheses, i.e., δ2, 

indicates the lowest order of δ in these hidden terms. If δ is 

sufficiently small, a reasonable approximation to the  

erivative may be obtained by simply neglecting all the terms 

represented by the “big-Oh” term. Thus, the central-

difference approximation is given by 

 
Note that the central difference provides an 

approximation of the derivative of the function at x0, but the 

function is not actually sampled there. Instead, the function 

is sampled at the neighboring points x0+δ/2 and x0−δ/2. 

Since the lowest power of δ being ignored is second order, 

the central difference is said to have second-order accuracy 

or second-order behavior[5]. This implies that if δ is reduced 

by a factor of 10, the error in the approximation should be 

reduced by a factor of 100 (at least approximately). In the 

limit as δ goes to zero, the approximation becomes exact. 

One can construct higher-order central differences. In order 

to get higher-order behavior, more terms, i.e., more sample 

points, must be used. Appendix A presents the construction 

of a fourthorder central difference. The use of higher-order 

central differences in FDTD schemes is certainly possible, 

but there are some complications which arise because of the 

increased “stencil” of the difference operator. For example, 

when a PEC is present, it is possible that the difference 

operator will extend into the PEC prematurely or it may 

extend to the other side of a PEC sheet. Because of these 

types of issues, we will only consider the use of second-

order central difference. 

A. One-dimensional Simulation in Free Space 

Electromagnetics is governed by the time-dependent 

Maxwell’s curl equations, which in free space are 

              (1.1 a) 

. (1.1 b) 

Eand H are vectors in three dimensions, but if we 

consider only one dimension 
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            (1.2 a) 

. (1.2 b) 

To put these equations in a computer, we 

approximate the derivatives with the “finite-difference” 

approximations: 

(1.3 a) 

(1.3 b) 

In these two equations, time is specified by the 

superscripts, i. e., “n” actually means a time ,  and 

“k” actually means the distance . (It might seem 

more sensible to use  as the incremental step, since in 

this case we are going in the z direction.  However,  is so 

commonly used for a spatial increment that I will use .)  

We rearrange the above equations to : 

                                                                      (1.4 a) 

                                                                                         
                                                                                   (1.4 b) 

Notice that the calculations are interleaved in both 

space and time. In Eq. (1.4 a), for example, the new value of 

 is calculated from the previous value of  and the 

most recent values of . This is the fundamental paradigm 

of the finite-difference time-domain (FDTD) method Fig. 

1.1) [1]. 

Eq. (1.4 a) and (1.4 b) look very similar.  However,   and 

 differ by several orders of magnitude: 

  , 

  . 

Therefore,  and  will differ by several 

orders of magnitude. This is circumvented by making the 

following change of variables [2]: 

   . (1.5) 

Substituting this into Eq. (1.4a) and (1.4b) gives 

                                                                                        (1.6a) 

                                                                          (1.6b) 

Now both  and  will have the same order of 

magnitude.  We will call this “normalized” units.  Physicist 

call this Gaussian units.  Note that 

 
and 

 
This quantity is called the “impedance of free 

space.” Once the cell size  is chosen, then the time step 

 is determined by  

                                       (1.7) 

where  is the speed of light in free space.  Therefore, 

     (1.8) 

 
Fig. 1.1: A diagram of the calculation of E and H fields in 

FDTD. 

Re-writing Eq. (1.6 a) and (1.6 b) in C computer code gives 

the following:  

 ex[k] = ex[k] + 0.5*( hy[k-1] - hy[k] ) (1.9 a) 

 hy[k] = hy[k] + 0.5*( ex[k] - ex[k+1] ) (1.9 b) 

Note that the n or n+1/2 or n-1/2 in the superscripts 

is gone. Time is implicit in the FDTD method. In Eq. (1.9 

a), the exon the right side of the equal sign is the previous 

value at n - 1/2, and the ex on the left side is the new value, 

n+1/2, which is being calculated. Position, however, is 

explicit.  The only difference is that k + 1/2 and k - 1/2 are 

rounded off to k and k-1 in order to specify a position in an 

array in the program.  Figure 1.2 illustrates a simulation in 

free space.  The following things are worth noting: 

1) The  and  values are calculated by separate 

loops, and they employ the interleaving described 

above. 

2) After the  values are calculated, the source is 

calculated. This is done by simply specifying a value of 
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 at the point k = 1, and overriding what was 

previously calculated. This is referred to as a “hard 

source,” because a specific value is imposed on the 

FDTD grid. 

B. Three-Dimensional Simulation 

The original FDTD paradigm was described by the "Yee 

Cell," (Fig. 1.2), named, of course, after Kane Yee [1].  Note 

that the E and H fields are assumed interleaved around a cell 

whose origin is at the location I, J, K.  Every E field is 

located 1/2 cell width from the origin in the direction of its 

orientation; every H field is offset 1/2 cell in each direction 

except that of its orientation.   

 
Fig. 1.2: The Yee cell. 

Not surprisingly, we will start with Maxwell's equations  

    (1.8) 

    (1.9) 

  . (1.10) 

Once again, we will drop the ~ notation, but it will 

always be assumed that we are referring to the normalized 

values. 

Eqs. (1.8 ) and (1.10) produce six scalar equations, two of 

which are: 

   (1.11 a) 

     (1.11b) 

The first step is to take the finite difference approximations. 

II. COMPUTER IMPLEMENTATION OF A ONE-DIMENSIONAL 

FDTD SIMULATION 

The assignment operator ” In C, the following is a erfectly 

valid statement 

a = a+b; 

In the usual mathematical sense, this statement is 

only true if b were zero. However, to a computer this  

statement means take the value of b, add it to the old value 

of a, and place the result back in the variable a. Essentially 

we are updating the value of a. In C this statement can be 

written moretersely as  

a += b; 
When writing a computer program to implement 

the FDTD algorithm, one does not bother trying to construct 

a program that explicitly uses offsets of one-half. Nodes are 

stored in arrays and, as is standard practice, individual array 

elements are specified with integer indices. Thus, the 

computer program (or, perhaps more correctly, the author of 

the computer program) implicitly incorporates the fact that 

electric and magnetic fields are offset while using only 

integer indices to specify location. As you will see, spatial 

location and the array index will be virtually synonymous. 

For example, assume two arrays, ez and hy, are declared 

which will contain the Ez and Hy 

fields at 200 nodes  

double ez[200], hy[200], imp0=377.0; 

 
Fig. 2.1: A one-dimensional FDTD space showing the 

assumed spatial arrangement of the electric- and magnetic-

field nodes in the arrays ez and hy. Note that an electric-

field node is assumed to exist to the left of the magnetic-

field node with the same index. 

The variable imp0 is the characteristic impedance 

of free space and will be used in the following discussion (it 

is initialized to a value of 377.0 in this declaration). One 

should think of the elements in the ez and hy arrays as being 

offset from each other by a half spatial step even though the 

array values will be accessed using an integer index. It is 

arbitrary whether one initially wishes to think of an ez array 

element as existing to the right or the left of an hy element 

with the same index (we assume “left” corresponds to 

descreasing values of x while “right” corresponds to 

increasing values). Here we will assume ez nodes are to the 

left of hy nodes with the same index. This is illustrated in 

Fig. 2.1 where ez[0] is to the left of hy[0], ez[1] is to the left 

of hy[1], and so on. In general, when a Courier font is used, 

e.g., hy[m], we are considering an array and any offsets of 

one-half associated with that array are implicitly understood. 

When Times-Italic font is use, e.g.,  we 

are discussing the field itself and offsets will be given 

explicitly. 

Assuming a Courant number of unity (Sc = 1), the 

node hy[1] could be updated with a statement such as 

hy[1] = hy[1] + (ez[2] - ez[1]) / imp0; 

In general, any magnetic-field node can be updated with 

hy[m] = hy[m] + (ez[m + 1] - ez[m]) / imp0; 

For the electric-field nodes, the update equation can be 

written ez[m] = ez[m] + (hy[m] - hy[m - 1]) * imp0; 

These two update equations, placed in appropriate 

loops, are the engines that drive an FDTD simulation. 

However, there are a few obvious pieces missing from the 

puzzle before a useful simulation can be performed. These 

missing pieces include 

1) Nodes at the end of the physical space do not have 

neighboring nodes to one side. For example, there is no 

hy[-1] node for the ez[0] node to use in its update 

equation. Similarly, if the arrays are declared with 200 
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element, there is no z[200] available for hy[199] 

to use in its update equation (recall that the index of the 

last element in a C array is one less than the total 

number of elements—the array index represents the 

offset from the first element of the array). Therefore a 

standard update equation cannot be used at these nodes. 

2) Only constant impedance is used so only a 

homogeneous medium can be modeled (in this 

case free space).  

3) As of yet there is no energy present in the field. If the 

fields are initially zero, they will 

remain zero forever. 

The first issue can be addressed using absorbing 

boundary conditions (ABC’s). There are numerous 

implementations one can use. In later material we will be 

consider only a few of the more popular techniques. The 

second restriction can be removed by allowing the 

permittivity and permeability to change from node to node. 

However, in the interest of simplicity, we will continue to 

use a constant impedance for a little while longer. The third 

problem can be overcome by initializing the fields to a non-

zero state. However, this is cumbersome and typically not a 

good approach. Better solutions are to introduce energy via 

either a hardwired source, an additive source, or a total-

field/scattered-field (TFSF) boundary. We will consider 

mplementation of each of these approaches. 

III. HISTORY 

Finite difference schemes for time-dependent PDEs have 

been employed for many years in computational fluid 

dynamic sproblems,[1] including the idea of using centered 

finite difference operators on staggered grids in space and 

time to achieve second-order accuracy.[1] The novelty of 

Kane Yee's FDTD scheme, presented in his seminal 1966 

paper,[2]was to apply centered finite difference operators on 

staggered grids in space and time for each electric and 

magnetic vector field component in Maxwell's curl 

equations. The descriptor "Finite-difference time-domain" 

and its corresponding "FDTD" acronym were originated 

by Allen Taflovein 1980.[Since about 1990, FDTD 

techniques have emerged as primary means to 

computationally model many scientific and engineering 

problems dealing with electromagnetic  ave interactions 

with material structures. Current FDTD modeling 

applications range from near-DC (ultralow-

frequency geophysics involving the entire Earth-ionosphere 

waveguide) through microwaves (radar signature 

technology.  

IV. CONCLUSION 

The basis and applications of the finite-difference time -

domain (FD-TD) numerical modeling approach for 

Maxwell's equations. FD-TD is very simple in concept and 

execution. However, it is remarkably robust, providing 

highly accurate modeling predictions for a wide variety of 

electromagnetic wave interaction problems. The accuracy 

and breadth of FD-TD applications will be illustrated by a 

number of two- and three-dimensional examples. The 

objects modeled range in nature from simple geometric 

shapes to extremely complex aerospace and biological 

systems. In all cases where rigorous analytical, code-to-

code, or experimental validations are possible, FD-TD 

predictive data for penetrating and scattered near fields as 

well as radar cross sections are in excellent agreement with 

the benchmarks. It will also be shown that opportunities are 

arising in applying FD-TD to model rapidly time-varying 

systems, microwave circuits, and inverse scattering. With 

continuing advances in FD-TD modeling theory as well as 

continuing advances in supercomputer technology, there is a 

strong possibility that FD-TD numerical modeling will 

occupy an important place in high-frequency engineering 

electromagnetics as we move into the 1990s. 
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