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Abstract— Despite the advent of wearable devices and the 
proliferation of smart phones, there still is no ideal platform 

that can continuously sense and precisely collect all 

available contextual information. Mobile sensing data 

collection approaches should deal with uncertainty and data 

loss originating from software and hardware restrictions. 

We have conducted life logging data collection experiments 

from many users and created a rich dataset (7.5 million 

records) to represent the real world deployment issues of 

mobile sensing systems. We create a novel approach to 

identify human behavioral motifs while considering the 

uncertainty of collect data objects. Our work benefits from 
combinations of sensors available on a device and identifies 

behavioral patterns with a temporal granularity similar to 

human time perception. Employing a combination of sensors 

rather than focusing on only one sensor can handle 

uncertainty by neglecting sensor data that is not available 

and focusing instead on available data. Moreover, we 

demonstrate that using a sliding window significantly 

improves the scalability of our analysis, which can be used 

by applications for small devices such as smart phones and 

wearable. 

Keywords— Frequent Pattern Mining, Temporal 
Granularity, Multivariate Temporal Data, Human-Centric 

Data, Human Pattern 

I. INTRODUCTION 

The proliferation of smart phones and, more recently, 

wearable devices such as fitness trackers and smart watches 

equipped with sensors, has led to a significant expansion of 

possibilities to study human behavior. Computing and 

networking capabilities of these devices within their 
multiple sensors makes them capable enough so we can 

easily observe and collect useful contextual information 

(mobile sensing). For instance, mobile health, which 

benefits from mobile sensing, offers the possibility of a shift 

from treatment to prevention in medical care systems. 

Researchers show that 69% of U.S. adults monitor and track 

their health status and 21% of them use technology for this 

purpose  [8]. Unlike wearable devices, which are still quite 

new in the market, the smart phone platform has benefited 

from a significant amount of scientific work ranging from 

personal air pollution footprint trackers applications  [15] to 
wellbeing  [13]. Both wearable devices and smart phones 

are very capable of sensing and collecting basic patterns of 

human behavior and collecting contextual information. 

While human behaviors are predictable, at least in 

aggregate  [1], traditional approaches for detecting human 

behavioral patterns (which are not digital) are often difficult. 

However, the advent of these ubiquitous devices enables 

researchers to identify human behavior to an extent that was 

not previously possible. On one hand, this information 

collection paradigm should be moved from simple data 

collection tools to intelligent systems with cognition 
capabilities  [4]. On the other hand, there is still a lack of 

wide acceptance of mobile sensing applications in real 

world settings. 

There are several reasons for this mismatch of 

capability and acceptance. First is the resource limitation 

and lack of accuracy in the collected contextual data, 

especially with regard to the battery life  [24]. The size of 

sensors that are dealing with radio frequency, i.e., Bluetooth, 

Wi-Fi and GPS, affects the quality of their data  [22] 

(smaller devices have less accurate data). The next reason, 

which has been noted but has not been widely explored, is 
the proximity of the smart phone to users  [5]. Smart 

watches and wearable are body mounted and thus the 

proximity problem has been resolved in those devices, but 

they still suffer from a lack of accuracy  [12]. The third 

reason for this problem is operating system restrictions of 

mobile devices, which removes background services when 

the CPU is under a heavy load in order to preserve the 

battery life. As a result, there is no ideal data collection 

approach that can sense and record individuals information 

24/7 with no data loss. The uncertainty of these data objects 

is a major challenge that limits the applications that can 
benefit from them. 

This Thesis deals with the problem of analyzing 

smart malware for smart devices, providing specific 

methods for improving their identification. The Thesis is 

strongly biased towards smartphones, since they currently 

are the most extended class of smart devices and the 

platform of choice for malware developers and security 

researchers. However, our discussion and conclusions apply 

to other devices as well, and can help to better understand 

the problem and to improve upon current defense 

techniques. 

We next describe the main motivation and 
objectives of this work. Firstly, we state that current 

methods aiming at analyzing smart malware are ineffective 

and we question the role that security analysts play during 

the study of large amounts of complex software. Secondly, 

we establish the need of systematic approaches and 

automated tools for analyzing smart malware. 

II. MOTIVATION 

This Thesis identifies two fundamental open issues where 

research is needed: There is more malware than ever before, 

and it is increasingly sophisticated. P1: Sustained growth in 

the number of malicious apps targeting smart devices. As 

discussed before, malware has become a rather profitable 

business due to the existence of a large number of potential 

targets and the availability of reuse-oriented malware 

development methodologies that make exceedingly easy to 

produce new samples. The impressive growth both in 

malware and benign apps is making increasingly 
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unaffordable any human-driven analysis of potentially 

dangerous apps. This is especially critical as current trends 

in malware engineering suggest that malicious software will 

continue to grow both in number and sophistication. As a 

result, market operators and malware analysts are 

overwhelmed by the amount of newly discovered samples 

that must be analyzed. This is further complicated by the 

fact that determine Increase in the sophistication of 

malicious apps and the rise of a new generation of smart 

malware. 

Malware for current smartphone platforms is 
becoming increasingly sophisticated and developers are 

progressively using advanced techniques to defeat malware 

detection tools. On one hand, smartphone malware is 

becoming more and more stealthy and recent specimens are 

relying on advanced code obfuscation techniques to evade 

detection. These techniques create an additional obstacle to 

malware analysts, who see their task further complicated 

and have to ultimately rely on carefully controlled dynamic 

analysis techniques to detect the presence of potentially 

dangerous pieces of code. On the other hand, the presence of 

advanced networking and sensing functions in the device is 
giving rise to a new generation of smarter malware. These 

malware instances are characterized by a more complex 

situational awareness, in which decisions are made on the 

basis of factors such as the location, the user profile, or the 

presence of other apps. 

This state of affairs has consolidated the need for 

smart analysis techniques to aid malware analysts in their 

daily functions. This challenge has to be tackled by novel 

methods to efficiently support market operators and security 

analysts. In some cases, this problem cannot be solved by 

market operators alone or by enhanced security models, as 

they really depend on each user‘s privacy preferences. For 
example, a leakage of data such as one‘s location or the list 

of contacts might well constitute a serious privacy issue for 

many users, but others will simply not care about it. The 

situation described above inevitably leads to the need for 

more sophisticated analysis techniques. This, however, 

poses an important challenge: many devices suffer from 

strong limitations in terms of power consumption, so certain 

security tasks executed on the platform may be simply 

unaffordable. External analysis performed on the cloud in 

near real time can constitute an alternative. Such a strategy 

seeks to save battery life by exchanging computation and 
communication costs, but it still remains unclear whether 

this is optimal or not in all circumstances. Furthermore, the 

rise of targeted—user-specific—malware poses one 

additional challenge: conducting particularized analysis for 

specific user and execution context. 

III. OBJECTIVES 

The main goal of this Thesis is to study methods, tools and 

techniques to assist security analysts and end users in the 
analysis of untrusted apps for smart devices and automate 

the identification of smart malware. 

To achieve this goal, we will focus in the following 

three general objectives:  

 Study the evolution and current state of malware for 

smart devices, as well as recent progress made to 

analyze and detect it. 

 Develop techniques aiming at better analyzing malware 

in large scale software markets, with particular 

emphasis on intelligent instruments to automate parts of 

the analysis process. 

 Facilitate the analysis of complex smart malware in 

scenarios with a constant and large stream of apps on 

target. Examples of such sophistication include 

malware targeting user-specific actions, malware 

hindering detection with advance obfuscation 

techniques, or malware exploiting the battery 

limitations of current devices, to name a few. 

A. Naïve Bayes 

D: Set of tuples 

 Each Tuple is an ‗n‘ dimensional attribute vector 

 X : (x1,x2,x3,…. xn) 

Let there be ‗m‘ Classes: C1,C2,C3…Cm 
Naïve Bayes classifier predicts X belongs to Class 

Ci iff 

 P (Ci/X) > P(Cj/X) for 1<= j <= m , j <> i 

Maximum Posteriori Hypothesis 

 P(Ci/X) = P(X/Ci) P(Ci) / P(X) 

 Maximize P(X/Ci) P(Ci) as P(X) is constant 

With many attributes, it is computationally 

expensive to evaluate P(X/Ci). 

Naïve Assumption of ―class conditional 

independence‖ 

p       ∏p       

 

   

 

P(X/Ci) = P(x1/Ci) * P(x2/Ci) *…* P(xn/ Ci) 

B. Apriori Algorithm for mining frequent Itemset 

Association rule generation is usually split up into two 

separate steps: 

1) First, minimum support is applied to find all frequent 

itemsets in a database.  

2) Second, these frequent itemsets and the minimum 

confidence constraint are used to form rules.  

While the second step is straight forward, the first 

step needs more attention.  Finding all frequent itemsets in a 

database is difficult since it involves searching all possible 

item sets (item combinations). The set of possible itemsets is 
the power set over I and has size 2n− 1 (excluding the empty 

set which is not a valid itemset). Although the size of the 

powerset grows exponentially in the number of items n in I, 

efficient search is possible using the downward-closure 

property of support (also called anti-monotonicity) which 

guarantees that for a frequent itemset, all its subsets are also 

frequent and thus for an infrequent itemset, all its supersets 

must also be infrequent. Exploiting this property, efficient 

algorithms (e.g., Apriori and Eclat) can find all frequent 

itemsets.  

C. Apriori Algorithm Pseudocode 

Procedure Apriori (T, minSupport) {//T is the database and 

minSupport is the minimum support  

L 1 = {frequent items}; 

for ( k=2; Lk-1 ! = Ø;k++) { 

Ck = Candidates generated from Lk-1 

// that is Cartesian product Lk-1 x Lk-1 and eliminating any k-
1 size itemset that is // not frequent 
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for each transaction t in database do { 

#increment the count of all candidates in Ck that are 

contained in t 

Lk = candidates in Ck with minSupport 

}// end of each 

return UkLk ; 

} 

As is common in association rule mining, given a 

set of itemsets (for instance, sets of retail transactions, each 

listing individual items purchased), the algorithm attempts 

to find subsets which are common to at least a minimum 
number C of the itemsets. Apriori uses a "bottom up" 

approach, where frequent subsets are extended one item at a 

time (a step known as candidate generation), and groups of 

candidates are tested against the data. The algorithm 

terminates when no further successful extensions are found.  

Apriori uses breadth-first search and a tree 

structure to count candidate item sets efficiently. It generates 

candidate item sets of length k from item sets of length k−1. 

Then it prunes the candidates which have an infrequent sub 

pattern. According to the do wnward closure lemma, the 

candidate set contains all frequent k-length item sets. After 
that, it scans the transaction database to determine frequent 

item sets among the candidates. 

Apriori, while historically significant, suffers from 

a number of inefficiencies or trade-offs, which have 

spawned other algorithms. Candidate generation generates 

large numbers of subsets (the algorithm attempts to load up 

the candidate set with as many as possible before each scan). 

Bottom-up subset exploration (essentially a breadth-first 

traversal of the subset lattice) finds any maximal subset S 

only after all. 

D. Sybil attack Detection in Social networks 

 
Fig. 1: Sybil attack Detection in Social networks 

E. VoteTrust: An Overview 

1) Basic idea 

 Considering invitation feedback as voting 
2) Key techniques 

 Trust-based votes assignment 

 Global vote aggregation 

3) Properties 

 High precision in Sybil detection 

 Efficient in limiting Sybil‘s attack ability 

F. Graph Model 

 

Fig. 2: Graph Model 

1) Proposed Methodology 

 Select trust seed – high reliable users 

 Distribute votes 

 Collect votes and computing score  

2) Trust-based Votes Assignment 

 Step1: Assigning votes to little human-selected reliable 

seeds 

 Step2: Propagating to whole users across the Link 

initiation graph  

          ∑
       

             
              

          

 

3) Example 

 
Fig. 3: Example 

 Node A is reliable seed 

 Total votes =5 

G. Vote Aggregating 

1) Trust-based votes assignment 

The goal of trust-based votes assignment is to assign low 

vote capacity to Sybils, so that we can limit the number of 

votes that Sybils could cast for each other. To achieve this 

goal, we first select some trusted users as seeds, and then 

propagate the vote capacity from the seeds to others along 
the links of friend invitation graph G(V;E). As Sybil region 

has a limited number of in-links, the total vote capacity 

entering the Sybil region is constrained.  

Selecting Trusted Seeds. The goal of seed selection 

is to find real users that will be the most useful in 

identifying other real users. A heuristic for selecting seeds is 

to give preference to those from which trust can be 

propagated to many other real users. Note that real users 

prefer to send requests to their real-life acquaintances, so we 

use the inverse PageRank method like TrustRank [15]. The 

basic idea is to build the seed set from real users that point 
to many real users that in turn point to many others and so 

on. In particular, we can reverse the links in the friend 

invitation graph, and compute the PageRank. Through 

manually inspecting a few users of high inverse PageRank 

scores, OSN providers can easily identify those real users to 

seed trust. 

2) Global Vote Aggregation 

Vote assignment gives low vote capacity to not only Sybils 

but also non-popular real users with few incoming links. We 

thus introduce the global vote aggregating phase to get the 

global acceptance rate p(u) of a node u. This phase further 

leverages the sign of outgoing links (i.e., the user feedback) 
for higher accuracy, as Sybils have a higher percentage of 

negative links to real region. 

3) Global rating computation 

For a node u, VoteTrust computes the p(u) by combining all 

the votes from its outgoing neighbors. As neighbors of high 
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global acceptance rates are more likely to be real users, we 

should bias towards their votes. Based on the above intuition 

4) Limiting the collusion votes 

When aggregating votes of outgoing neighbors, an 

important problem we should address is how to prevent the 

attacker from increasing the total number of collusion votes 

by enlarging the Sybil set? Considering the case illustrated 

in Fig. 6. Initially, the Sybil region has 3 Sybils that receive 

a total of 1 vote capacity from the real region. The vote 

capacity of each Sybil is 1=3, and each Sybil can collect at 

most 1=3 collusion votes. However, if the attacker adds 
another two Sybils, the vote capacity of individuals drops to 

1=5 as the total vote capacity is constant. But each Sybil can 

collect at most 2=5 collusion votes. This means that the 

attacker can increase collusion votes for Sybils by enlarging 

the Sybil region. In fact, a complete-connected subgraph 

with N Sybils and c total capacity could create c(N¡1) 2 

collusion votes, which increases as N grows.  

 Step1: Set all users‘ initial score as 0.5;  

 Step2: Iteratively computing each user‘s trust score 

according to aggregated votes. 

         
                      

                 
           

H. Algorithm for Sybil Detection 

Procedure VOTETRUST-D(G,Vᵟ) 

if    Vᵟ then               vote assignment 

I(u) ← N / | Vᵟ | ; 

else 

 I(u) ←0 ; 

end if 

while  ∆ > ɛ1  do 

 for u    V  do 

       ∑
    

    
           

         
 

end for 

end while  

p(0)   ← 0.5 ;                  vote aggregation 

   while  ∆ > ɛ2   do 

 for u   V do 

 

 ̂     
                     

                   

 

p ← WilsonScore ( ̂); 

end for 

     end while 

end procedure 

1) Small-sample Problem 

 
Fig. 4: Number of votes is too small 

2) Wilson Score 

   
 ̂  

 

  
     ⁄

  
 

 
     ⁄

 

Weighted average of   ̂ and  ½. 

a) Security Properties (I) 

 Theorem 1: The Number of Sybil‘s attack-link needs to 

satisfy the following upper bound 

          
     

 

     
 

Where δf is Detection Threshold 

 
Fig. 5: Security Properties 

b) Security Properties 2 

 Theorem 2: Sybil community size need to satisfy the 

upper bound 

     
   

  

 

Where δv is Vote Collection Threshold 

IV. CONCLUSION 

In this paper, we have proposed a scalable approach for 

daily behavioral pattern mining from multiple information 

sources. This work benefits from a realistic dataset and users 

who use different smart phone brands. We use a novel 

temporal granularity transformation algorithm that makes 

changes on timestamps to mirror the human perception of 

time. Our behavioral motif detection approach is generic and 

not dependent on a single source of information; therefore, 

we reduce the risk of uncertainty by relying on a 
combination of sensors to identify behavioral motifs and 

patterns. Our app also identifies health deficiencies in user 

according to the behavior user is opting or recording in our 

app. We also generate a probabilistic results from the data 

generated by user. We investigate the efficiency of our work 

by evaluating it from three different perspectives: the 

execution time performance, the effect of threshold changes 

on motif detection, and the validity of the identified 

behavior from a temporal perspective. This approach is 

scalable enough to be used in several types of applications 

such as mobile health, context-aware recommendations and 

other quantified-self applications 
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